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Integral equations which originate in a number of contact problems concerned 
with the vibrations of stamps on the surface of domains, whose boundaries are 
at infinity (for example, on the surface of a layer, of a multilayer foundation, 

of a cylinder, a tube, etc. ), are considered. Such problems reduce to integral 
equations of the first kind with a difference kernel containing oscillating 

members. The oscillations grow as the vibration frequency increases, and this 
either makes application of known methods of solving equations of the first 
kind difficult, or completely excludes such a possibility. 

The possibility is studied of using a method of solving these equations and 

questions of its efficiency are discussed ( *) , In principle, the method permits 
construction of exact solutions of some equations approximating the initial 

equations, and errors in the approximate solutions are given. 

Z l The problem for an elastic layer of thickness h lying friction-free on a rigid 
foundation during vibrations of a stamp surface of width 2a adhering friction-free to 

its surface, results in an integral equation of the form 
a 

s 
~(~-~)~(~)~~ = J@(t), jZ[\<U (1.1) 

/cll) = 5 K(u)f+‘du II. 2) 

II (u) =r[r&p cth s2 - (u2 - ffz?ct2)a ala cth aI]+ CL31 

ok = 1/u2 - ,$!$a, xi2 = pW2h2 (2p + h)-r, %a2 = i,ti2ha,.&-’ 

l ) A. V. Belokon also expressed the possibility of using this method in one of the semi- 
nars of the elasticity theory department of Rostov State University. 
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Here 4 (s) are the unknown contact stresses, f (3) .is a function describing the motion 
of the stamp surface ( f (IC) 3 1) f or vibrations of a plane stamp), h, p are Lamd co- 
efficients, Y, p, o are the Poisson9 ratio, density of the layer material, and frequency 

of stamp vibration. respectively. 
The problem of the radial vibrations of a rigid belt of width &J, set on an elastic 

cylinder of radius h, also reduces to (1.1) in which the function K(U) is given by the 

relationship 
X&l K (u) = - 4 

[( 
u2 - J$ 

1 
2 I (ai) - U%iSJ (aa) + -+I -l (1.4) 

(Iti is the k-th order Bessel function of imaginary argument, and I (u) = IIT1 (u) 

Ill (u))* 
A characteristic singularity of the function K (u) is the presence of zeros and poles 

on the real axis, whose number generally grows as the frequency (o increases. In other 
respects, these functions possess the properties of the functions in corres~nding static 
problems [ 13, namely, they are real on the real axis, meromorphic in the complex plane 

and diminish at infinity as lu-’ I. 
The presence of real zeros and poles in the functions K (u) is due to the appearance 

of elastic waves in corresponding domains, which should have a definite direction in the 

absence of sources at infinity [Z, 33. (This question has been discussed in [4] ).The 
direction of the elastic waves dictates the selection of the contour I’ in the representa- 
tion (1.2). As a rule, when the time factor e-*w’ is chosen, this contour coincides eve- 
rywhere with the real axis except for segments containing the real poles. The positive 

poles are here bypassed from below, and the negative from above ( *), 
The case when the zero or pole of the function h: (U) coincides with the origin of 

reference, as well as the rare case when the residues of K (u) in the positive poles have 

unlike signs, are not considered here. 
On the basis of [4], the integral equation (1.1) is then uniquely solvable for any twice 

continuously differentiable right side in the space of continuous weighted functions, i. e. 

In order to construct the approximate solution of (1.1) below, we shall approximate 
the function R (u) by the approximate function H1 (u) fA is an additional approxima- 
tion parameter) 

Nt (U) = 110 (U) fi (U” - Zk2) (Us - rrZ)-“, Ho(u) = 8-l th Au (1.5) 
k-1 

with the property 

Condition (1.6) imposes the requirement that the real zeros and poles of the functions 

K (u) and Hr (u) gf a ee, This requirement does not extend to the distribution of com- 

plex zeros and poles. In this case, for sufficiently small 6 , the solution of the integral 
equations whose kernels are defined by the functions K (u) and IIt (u) will be close 

3 It is shown that exceptions will exist in the note of V. A. Babeshko “New effective 
method of solving dynamic contact problems” (Abstracts of Reports to the 13th Interna- 
tional Congress on Theoretical and Applied Mechanics, Moscow, 1972). 
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in the sense of [Sj, i.e. 

(1.7) 

The constant M depends only on the function K (u). 
We therefore arrive at the need to solve (1.1) with the kernel (1.2) in which HI (u) 

plays the part of the function K (u) _ 
As an example, let us present the function HI (IL) in (1.5) which approximates the 

function K (u) in (1.4) with error no exceeding 10% for Y = 0.3,~~ = 4.45, A = 0.1. 
In this case,there are three poles on the real axis: 71 = 0.7523, ~2 = 1.3575, 73 = 

4.4956, four complex poles: Tr = r5 = ~6 = 77 = 7.774i, and also two real zeros: 

21 = 2.2629, z2 = 2.3786,and the remaining zeros are complex: z3 = 2.92’70 i, ~4 = 

-1.2870 + 7.6493 i, zs = 1.2870 + 7.6493i, zs = 7.7684i, 17 = Iii. 

2. Let us assume 
h, (u) = 1 H,, (I) etut&, n= 0,1 (2.1) 

-DD 

Equation (1.1) with the kernel h, (u) is solved exactly [6,7], 
Let us reduce the solution of (1.1) with the kernel h, (u) to the solution of thesame 

equation with the kernel h, (u). 
To this end, let us use a representation of the form [8] 

a 

s hl (x - t) q1 (t) dt = fJ (- & - zk2) R (x) = nj (x) 
-a k=l 

(2.2) 

R (2) = i 1 H,, (U) fi (U” - -(k2)-1eiu(s-*)d~ q(t) dt 
--(I -03 k=l 

The last equation in (2.2) is an inhomogeneous differential equation with constant coef- 
ficients of order 2m in the function R (z). Having determined its general solution for 
f (5) = exp iqr., and then having applied a differential operator of the form 

we arrive at an equation to determine the unknown q (x) representable as 
ll 

s h, (5 - t)q(t)cEt = dJ(tl)fGn" -t i (xk-e-iy $.xk+eizkx) (2.3) 
-0 k=l 

s @I) = fi @I2 - Zk2) (q2 - rky-1 
k=l 

The constants zk* in the representation (2.3) are to be determined from the condition 
that the function 4 (X) found must satisfy the initial equation (1.1). Equation (2.3) with 
an arbitrary right side f (x) is solved in closed form p], For the purposes herein, it is 

sufficient to solve this equation for f (z) = exp iq x. Denoting the solution of this 
equation by q,, (r), we obtain 
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q. (J, ?j) = (2A)-‘e-“aI3 (a - x) P (a -j- x) IM - iqb-’ J (x)1 (2.4) 
a 

J (5) = beba s P-1 (- u + t) P-l (a + 1) Pm2 (t - z) eWt 
--(I 

M =: ebaK1 (e-2ba) [$- e-ins + iTJbeba S P (a - E) P-l (- a - E) X 

-cc 

a 

ebE s P-l (a ‘- tf P-l (a + t) Pv2 (t - E) eWl dg 
1 

P (1) d(l - ,-.zbt)-I,‘,, b = ‘(2.4)-l n 

Here K (z) is the complete elliptic integral of the first kind. 
Therefore, the solution of (2.2) with the right side mentioned is, because of (2.3), (2.4) 

41 (N = nS (rl) Qll (G rl) + i IWO @I - W -I- &IO (5, Wl (2.5) 
k=l 

On the other hand, the function q1 (2) can be represented as 

q1 (x) E. Y&n” + 5 (yk+ei9&fl-hd + Yk-ei’k (n-x)) (2.6) 
k=--m 

The constants Y,* are here determined from the infinite system in which it is neces- 

sary to take the upper and lower signs in sequence 

(2.7) 

k t;--nnt, --m-j- 1, . . . . -1, 1,. f 

Ek = r-k, h- = - 1, - 2, . . . - 1% gk = i (2k - 1) b, k = 1, 2, se. 

The function q. (x, $1) can also be represented as (2.6). namely : 

40 (& rl) = 2 ctg (iqA) eiax -+ 5 [cki (9) e*nk’a+-T’ + c,- (q) eirik@--‘)l (2.8) 
k=4 

and hence the coefficients c,f (q) are determined exactly as a result of expanding the 

left side of (2.7) in an analogous series. These coefficients are 

%tCk* (q) = iq (e’llar,* - e-“arz) + (iqe-ina(lslo+ 2bMe-bb) $& 

rk+ = 5 ; bpGn’%a+r+k B (P + n)> rk- = i i b&+-p&t-kB (n - k) 
n=o P==O n==k p=o 

r:k = jj $j f&h+-pb--kB (n - 4, r;k = 5 5 i%p&,b+p+kB (p + n) 
n==k p=o n=o P=ll 

*-i 
r2ii - &$n+kB (n) f &p = i 5 anakB(n) [n - k + p + i+4sc-1]-L 

n=o n=O k=o 
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Ps* = 2 r: %%B (n) [n - k + p - ir@n]-’ 
==Ok=o 

a,=&j==i, -a, = 6, = + 

6, = - (2n - 1) cl, = (2ti2;l;)!! , n=2,3,... 

B (n) = e-4”La, b = (Z/l)-1 ?c 

They are the solutions of the infinite system (2.7) from which the first m rows and co- 

lumns must be discarded, i. e, they satisfy the system 

where 6 = iq ctg (iq A). 
Taking this circumstance into account, we insert (2.8) into (2.5) and easily establish 

the connection between the coefficients Y$ and the unknown constants zp* and 

C$ (q). This connection is given by the relationship 

Y&p = (239-l izpe”zPa ctg (iz+A) $, p = 1, 2, . . . m c&lo) 
n 

y? = 6-l r) [J$cZ (-- iz,) t_ ~~C;f:(iZ,)l, k = 1, 2.. . 

xt 

1.9 

3.2 

5.8 

7.1 

8.4 

Yt 

1.2324 

2.6838 

1.0156 

I.7104 

2.1840 3.1002 
3.3969 3.1002 
6.1333 4.3079 

1.0349 
3.4$47 
4.7459 
7.6136 

1.0915 
3.7951 
5.9773 

3.4747 2.3405 
4.5143 4.4960 
6.5099 ;t .0634 
9.0573 7.4766 

p=o 

Table 1 Now, let us insert the relationship (2.10) into(2.7) 
and let us take into account that the constants 
C,$ (tj) become identical to the corresponding 

systems (2.9) for 11 = C iz,, p = 1, 2, . . . m. 
As a result of manipulation, we arrive at the 

definition of the unknowns xr,:pf of a finite system 

of linear algebraic equations of the form 

5 i& (- iz,) zp+ + A: (izp) zpl = 
p=1 

- WW!:(~), r=l, 2 , . . .,m 

where (A,* (11) are the left sides of (2.9). 

8. Presented in Table 1 as an example is the 
distribution of real zeros and poles of the function 
IL (u) given by (1.4) for Y = 0.3 as a function of 
the frequency (of values of the parameter xs). 

The distribution of real zeros and poles of the 

function K (u) given by (1.3) and closeIy related to the Rayleigh function is well known 
in the literature [9] and is not presented here. 
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An exact solution of the f~damental exterior mixed problem with a circular 

line of separation of the boundary conditions for a transversely isotropic half- 

space is proposed. The interior fundamental mixed problem for an isotropic 
half-space has been examined in Cl, 23, 

1 l Let us consider a transversely isotropic half-space z > 0 whose planes of isotro- 
py are parallel to the boundary. We understand the problem with the following condi- 

tions on the boundary z = 0: 

0, = @(PY cp)l %x = %r (P, cp) 

%I2 = %/z (P, cp) (P < a) 

w = w (PI OP), % = n, (P, 0) 

u Y = =% (PI CF) (P > 4 

to be the exterior fundamental mixed problem. 

We introduce the complex tangential displacements u = u, + iu, and shear stres= 
ses Z L= Tzx + iz*, 7 = z,, - it,. If the requirement of decomposability in Four- 

ier series in the angular coordinate is imposed on the given and desired functions, then 


